skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Drouillard, Matthew J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arecaceae (palms) are an important resource for indigenous communities as well as fauna populations across Amazonia. Understanding the spatial patterns and the environmental factors that determine the habitats of palms is of considerable interest to rainforest ecologists. Here, we utilize remotely sensed imagery in conjunction with topography and soil attribute data and employ a generalized cluster identification algorithm, Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN), to study the underlying patterns of palms in two areas of Guyana, South America. The results of the HDBSCAN assessment were cross-validated with several point pattern analysis methods commonly used by ecologists (the quadrat test for complete spatial randomness, Morista Index, Ripley’s L-function, and the pair correlation function). A spatial logistic regression model was generated to understand the multivariate environmental influences driving the placement of cluster and outlier palms. Our results showed that palms are strongly clustered in the areas of interest and that the HDBSCAN’s clustering output correlates well with traditional analytical methods. The environmental factors influencing palm clusters or outliers, as determined by logistic regression, exhibit qualitative similarities to those identified in conventional ground-based palm surveys. These findings are promising for prospective research aiming to integrate remote flora identification techniques with traditional data collection studies. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Arecaceae (palms) play a crucial role for native communities and wildlife in the Amazon region. This study presents a first-of-its-kind regional-scale spatial cataloging of palms using remotely sensed data for the country of Guyana. Using very high-resolution satellite images from the GeoEye-1 and WorldView-2 sensor platforms, which collectively cover an area of 985 km2, a total of 472,753 individual palm crowns are detected with F1 scores of 0.76 and 0.79, respectively, using a convolutional neural network (CNN) instance segmentation model. An example of CNN model transference between images is presented, emphasizing the limitation and practical application of this approach. A method is presented to optimize precision and recall using the confidence of the detection features; this results in a decrease of 45% and 31% in false positive detections, with a moderate increase in false negative detections. The sensitivity of the CNN model to the size of the training set is evaluated, showing that comparable metrics could be achieved with approximately 50% of the samples used in this study. Finally, the diameter of the palm crown is calculated based on the polygon identified by mask detection, resulting in an average of 7.83 m, a standard deviation of 1.05 m, and a range of {4.62, 13.90} m for the GeoEye-1 image. Similarly, for the WorldView-2 image, the average diameter is 8.08 m, with a standard deviation of 0.70 m and a range of {4.82, 15.80} m. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025